Elite Engineering InNnc. August 2006
Pinpoint Engineering Inc.

THE BLITZCORE PROCESSOR

Introducing the Blitzcore™ Processor

= REVOLUTIONARY Bus DESIGN. Beyond the limitations of the front side bus
(FSB), the Blitzcore utilizes a new design for ultra fast throughput.

= CHIP LEVEL PARALLEL PROCESSING. Solving the issues of parallel
processing on a chip level.

= COMBINATORIAL ENGINE. This proprietary logic circuit optimized for real-
time compression and encryption can run 30 to 40 times faster than a
typical processor because it is not waiting for instructions.

= APPLICATIONS FOR THE INTELLIGENCE COMMUNITY AND HOMELAND SECURITY.
High speed imaging, compression and encryption with real time analytics
and advanced autonomy algorithms for Unmanned Aerial Vehicles
(UAVs), video management systems, and the aerospace industry.

TABLE OF CONTENTS PAGE

Lol B L AV I U] o 0 1 1= P
2] T w0l] g o g Tl 1=~ o | PP
BlIEZCOIE ALU ..o e
Paralle] PrOCESSINGg .ttt ittt e e e e
Combinatorial ENgine. ..o

ManufaCturing PrOCESSuciiii i e ettt e e e e e neens

Y=ol U YA D LY o PP

L AV AT S LT 0

Executive Summary

Elite Engineering Inc. is a research and development firm based in Colorado. The
firm develops intellectual property (IP) cores licensed to new projects and
established companies based on applications of the proprietary Blitzcore™ Processor
technology.

Elite was organized to develop and produce IP cores and application specific
integrated circuit (ASIC) chip design in four key areas:

defense and military applications
media applications

wireless technologies

medical imaging

The firm’s area of expertise is ultra high speed digital design. The background of the
firm’s engineers includes development within the strict tolerances of the aerospace
industry and the the diligent requirements of medical projects requiring FDA-audits.

The Blitzcore Processor was developed in partnership with Pinpoint Engineering. The
design uses aspects of chip based parallel processing and a revolutionary internal
bus design that eliminates bottlenecks and enables tremendous data throughput.

The firm is developing a unique parallel processing technique in its discret logic
design for real-time compression and encryption. The firm is solving key issues of
cache coherency related to parallel processing on a chip level. The Blitzcore doubles
as a RISC core processor with a limited number of instructions to handle any type of
general purpose processing.

The firm is currently considering several candiates for their board of directors and
advisory panel. The management of Elite is also being assembled.

Revenue comes from project management fees, firm development fees, licensing
fees from intellectual property, and ownership in companies launched.

Blitzcore Processor

The Blitzcore central processing unit (CPU) is an ultra high throughput chip design
developed to process enormous amounts of data on a order of several magnitudes
greater than other microprocessors. The Blitzcore utilizes 6 to 16 separate uniquely
modified RISC core processors.

The processors today still employ the same Harvard Architecture method of
processing data and uses a single bus to transport raw data and compressed data to
and from its locations. The processor while becoming more and more complex will
still always lack the type of throughput that our ASIC chips can provide. The
frontside bus is the gatekeeper to the chip, requiring all data to pass through it.

The Blitzcore uses an instruction set specifically designed for processing raw video with
a limited number of clock cycles. Lowering the number of clockcycles is an important
factor in increasing the speed and efficiency of the design.

UAV Blitz CPU Module

Re-distribution Driver

Dispatch Unit

Combinatorial Engine
Real Time Compression
Real Time Encryption

Raw Video Cache Driver

' 16 — 32bit GP Registers
256k Cache
GPP

8 Flaating Paint Processar
Integer Linit

Inatruction Decoder

Instruction Quoua

LoadrStore Lnit

Cache interface

Revision 1.41_T7 - BCPU
Pinpoint Engineering Inc.

Blitzcore ALU

The Blitzcore CPU utilizes a proprietary arithmetic logic unit (ALU). A typical ALU of a
computer's CPU is a part of the execution unit, a core component of all CPUs. ALUs
are capable of calculating the results of a wide variety of basic arithmetical
computations. Virtually all modern computer ALUs use the two's complement binary
number representation. Early computers used a wide variety of number systems,
including one's complement, sign-magnitude format, and even true decimal systems,
with ten tubes per digit.

Mathematician John von Neumann proposed the ALU concept in 1945, when he
wrote a report on the foundations for a new computer called the EDVAC (Electronic
Discrete Variable Automatic Computer). Later in 1946, he worked with his colleagues
in designing a computer for the Princeton Institute of Advanced Studies (IAS). The
IAS computer became the prototype for many later computers. In the proposal, von
Neumann outlined what he believed would be needed in his machine, including an
ALU.

Von Neumann stated that an ALU is a necessity for a computer because it is
guaranteed that a computer will have to compute basic mathematical operations,
including addition, subtraction, multiplication, and division. He therefore believed it
was "reasonable that [the computer] should contain specialized organs for these
operations".

Most of the computer’s actions are performed by the ALU. The ALU gets data from
processor registers. This data is processed and the results of this operation are
stored into ALU output registers. Other mechanisms move data between these
registers and memory. A Control Unit controls the ALU, by setting circuits that tell
the ALU what operations to perform.

Most ALUs can perform the following operations:

¢ Integer arithmetic operations (addition, subtraction, and sometimes
multiplication, though this is more expensive)

e Bitwise logic operations (and, not, or, xor)

e Bit-shifting operations (shifting or rotating a word by a specified humber of
bits to the left or right, with or without sign extension)

Many standard ALUs do not handle integer division or any floating point operations
since they can be emulated in software. However, several algorithms do exist for
implementing division in hardware. The Blitzcore CPU can handle all math functions
including floating point operations.

The ALU inside the Blitzcore Processor and the Combinatorial Engine are designed
specifically for high throughput of special codec algorithms. These designs are
currently being tested and updated everyday before we apply for our patents in this
area. The ALU’s are always designed by different CPU manufacturers to suit their
specific needs. We have done the same but we maintain that our ALU canrun 2 - 4
times faster than a typical CPU’s ALU. We attribute this to the unique design of

getting the information to the ALU faster and calculating the data quicker.

Parallel Processing

The Blitzcore Processor is an IC level parallel processor but we design the Blitzcore
Processor into all of our ASIC chips based on our specific customer needs. For
example the ASIC Chip for the UAV utilizes 16 Blitzcore Processors to increase the
Compression and Encryption Process. We consider the Compression Speed to be real
time. We are able to process data from a CMOS Imager at a rate of 100 - 10,000
Frames Per Second (FPS) depending on the electronic shutter speed of the camera.
Most Cameras that process data at this speed are not able to be kept up with by
conventional embedded systems or high-speed PCs. We are currently designing a
UAV Chip that will utilize Pinpoint Engineering’s proprietary Blitzcore Processors and
the front-end design will utilize a Patent Pending Camera Interface owned by Elite
Engineering and Pinpoint Engineering Inc. This front-end design directly interfaces
to a CMOS imager that we are currently designing with a manufacture of this type of
device. Our proprietary CMOS Imager will allow us to make full use of our processor
high-speed compression/encryption technique.

The chip has a very specific technique to process video data at a high rate of speed.
This chip will ultimately be very useful in many areas in the aerospace industry. The
main target for this project is the UAV market.

The combinatorial engine that Pinpoint Engineering has developed will be developed
into prototype “B” for demonstrations for our larger customers and clients. The
combinatorial engine is explained in its own section. Each Blitzcore processor has its
own engine optimized for sampling and compressing video data from a CMOS
imager.

We can sample automatically 16 times faster
because of tha CMOS imager interface samples 16
sagments al one lime. Each processor is
responsible for 250,000 pixels each. This helps HDUAY ASIC Module
reduce the amount of data that has to process pixel
data via a single sampling line. The row and colum
scanning happen via the control lines and the pixel
clack runs at very high speeds.

CMOS Imager

8 Confrod Lines———

16 Data Lines

4 Megaplzel

25EMByte Flazh
Memory Instructions |—
for UAV ASIC

(=]
B
1
]
=
B
2
=
4
£
=
m
5
=
5
]
o
]
=%
g
]
(=}
&
2
[}
=]
g
-3
5
2
B
B
-}

g (VLVS) [onuoD sapQ %810 peH | sulbug uoingsip-sy e1eg

Revision 1.011_pqg .

Pinpoint Engineering Inc.

The Blitzcore CPU is our main processor that processes all the data but is given all of
its instructions on what to do by the Distribution Engine. The Blitzcore CPU has very
limited instructions that allow it to be optimized for use with the UAV ASIC. Each
Blitzcore CPU has the capability of running almost all Codecs used on the market
today. We will evaluate our final customers needs and find which compression
technique they prefer the best and then optimize the instructions to handle the
Codecs our customers require.

The Distribution Processor section of the UAV ASIC is far more complex than it looks
in the block diagram. Its responsibilities include sending out the information from
the CMOS Imager, Configuring all processors to be RISC or Combo Engine, Control of
CMOS Imager and run embedded programs from flash memory. This processor is
not a typical microprocessor it has a proprietary instruction set that is more dense
then the RISC Processor because of its duties. It can be programmed to run like a
general purpose processor, although the amount of instruction is not as large as and
IBM™ Processor is lies somewhere between our RISC and their processor. The
CMOS Imager is a modified semiconductor device that is designed specifically for use
with our UAV ASIC Chip. It is capable of being sample in 16 separate locations at
one time thus speeding up our frame rate immediately by 16 times. Each Blitzcore
CPU has the capability of handling direct data from the CMOS Imager but the data is
facilitated by the Distribution processor. It will receive instructions on when to start
sampling the data and it knows what to do automatically for compression and
encryption.

Concurrency was first exploited in computing to better utilize or share resources
within a computer. Modern operating systems support context switching to allow
multiple tasks to appear to execute concurrently, thereby allowing useful work to
occur while the processor is stalled on one task. This application of concurrency, for

example, allows the processor to stay busy by swapping in a new task to execute
while another task is waiting for I/O. By quickly swapping tasks in and out. Giving
each task a “slice” of the processor time, the operating systems can allow multiple
users to use the system as if each were using it alone (but with degraded
performance).

Most modern operating systems can use multiple processors to increase the
throughput of the system. The UNIX shell uses concurrency along with a
communication abstraction known as pipes to provide a powerful form of
modularity: Commands are written to accept a stream of bytes as input (the
consumer) and produce a stream of bytes as output (the producer). Multiple
commands can be chained together with a pipe connecting the output of one
command to the input of the next, allowing complex commands to be built from
simple building blocks. Each command is executed in its own process, with all
processes executing concurrently. Because the producer blocks if buffer space in the
pipe is not available, and the consumer blocks if data is not available, the job of
managing the stream of results moving between commands is greatly simplified.
More recently, with operating systems with windows that

Invite users to do more than one thing at a time, and the Internet, which often
introduces I/0 delays perceptible to the user, almost every program that contains a
GUI incorporates concurrency.

Although the fundamental concepts for safely handling concurrency are the same in
parallel programs and operating systems, there are some important differences. For
an operating system, the problem is not finding concurrency-the concurrency is
inherent in the way the operating system functions in managing a collection of
concurrently executing processes (representing users, applications and background
activities such as print spooling) and providing synchronization mechanisms so
resources can be safely shared. However, an operating system must support
concurrency in a robust and secure way: Processes should not be able to interfere
with each other (intentionally or not) , and the entire system should not crash if
something goes wrong with one process. In a parallel program, finding and
exploiting concurrency can be a challenge, while isolating processes from each other
is not the critical concern it is with an operating system. Performance goals are
different as well. In an operating system, performance goals ar normally related to
throughput or response time, and it may be acceptable to sacrifice some efficiency to
maintain robustness and fairness in resource allocation. In a parallel program, the
goal is to minimize the running time of a single program.

Our parallel processing technique is very unique in that the I/O for accessing the
CMOS Imager data is initial stage of compression. The front-end of our processor is
setup to scan the data directly into the first stage compressed raw video cache.
Each processor goes into the second stage of compression on its own particular real-
estate for 1/16™" of the 4 Megapixel CMOS Imager. The compression technique is so
fast that it allows for the use of the word “real-time”. However real-time is
something that we are far beyond in terms of throughput and managing and
analyzing the data available to us from the CMOS Imager.

By far the most common way to characterize these architectures is Flynn’s
taxonomy. He categorizes all computers according to the number of instruction

streams and data streams they have, where a stream is a sequence of instructions or
data on which a computer operates. In Flynn’s taxonomy, there are four
possibilities: SISD, SIMD, MISD, and MIMD.

Single Instruction, Single Data (SISD). In a SISD system, one stream of instructions
processes a single stream of data, click on the arrow to the right to see an example
of the SISD approach. This is the common von Neumann model used in virtually all
single-processor computers.

Instructions Input data

Control Unit

Cwiput Data

Single Instruction, Single Data architecture

Single Instruction, Multiple Data (SIMD). In a SIMD system, a single instruction
stream is concurrently broadcast to multiple processors, each with its own data
stream. Click on the arrow at the end of this paragraph to see and example. The
original systems from Thinking Machines and MasPar can be classified as SIMD. The
CPP DAP Gamma II and Quadrics Apemille are more recent examples; these are
typically deployed in specialized applications, such as digital signal processing, that
are suited to fine-grained parallelism and require little interprocess communication.
Vector processors, which operate on vector data in a pipelined fashion, can also
categorized as SIMD. Exploiting this parallelism is usually done by the computer.

Instructions

Input data

Input data

Input data

Input data

Input data

=

¥
Processor Processo

y

r Processor Processor Processor

Output Data

Output Data

Qutput Data

Qutput

Data

Single Instruction, Multiple Data architecture

Cutput Data

Multiple Instruction, Single Data (MISD). No well-known systems fit this
designation. It is mentioned for the sake of completeness.

Multiple Instruction, Multiple Data (MIMD). In a MIMD system, each processing
element has its own stream of instructions operating on its own data. This
architecture is the most general of the architectures in that each of the other cases
can be mapped onto the MIMD architecture. The vast majority of modern parallel
systems fit into this category. Click on the arrow to see and example.

Instructions

Processor

Output Data

Input
data

Instructions.

Control
Unit

Processor

Output Data

Input
data

Instructions

Processor

Output Data

Input
data

Instructions

Control
Unit

Processor

Output Data

l Interconnect Metwork 1

Multiple Instruction, Multiple Data architecture

Input
data

The HD-UAV ASIC falls into two categories SIMD and MIMD. The chips is specifically
designed for the Aerospace Industry to handle highspeed image compression and
encryption but also to handle autonomy control over the UAV Drone itself. The
purpose of this chip is to be able to handle the media requirements of a High
Resolution Camera and while compressing and encryption are happening
simultaneously, it also capable of making intelligent decisions about its flight path
and possible collision detection based on video data.

The MIMD category of Flynn’s taxonomy is too broad to be useful on its own; this
category is typically decomposed according to memory organization.

In a shared-memory system is called SMPs (symmetric multiprocessors). Click on
the arrow to the right to see and example. All processors share a connection to a
common memory and access all memory locations at equal speeds. SMP systems
are arguably the easiest parallel systems to program because programmers do not
need to distribute data structures among processors. Because increasing the
number of processors increases contention for the memory, the processor/memory
bandwidth is typically a limiting factor. Thus, SMP systems do not scale well and are
limited to small number of processors.

0 B 0
Cremary -

The Symmetric Multiprocessor
(SMP] architecture

The other main class of shared-memory systems is called NUMA (nonuniform
memory access). The memory is shared and is uniformly addressable from all
processors, but some blocks of memory may be physically more closely associated
with some processors than others. This reduces the memory bandwidth bottleneck
and allows systems with more processors. As a result, the access time from a
processor to a memory location can be significantly different depending on how
“close” the memory location is to the processor. To mitigate the effects of
nonuniform access, each processor has a cache, along with a protocol to keep cache
entries coherent. Hence, another name for these architectures is cache-coherent
nonuniform memory access systems (ccNUMA). Logically, programming a ccNUMA
system is the same as programming an SMP, but to obtain the best performance, the
programmer will need to be more careful about locality issues and cache effects.

5 S S B 0 B B

memory memory

CICICIED EJEYEDEY

The nonuniform memory access
{NUMA) architecture

In a distributed-memory system, each process has its own address space and
communicates with other processes by message passing (sending and receiving
messages).

Interconnect network

The distributed-memory
architecture

Depending on the topology and the technology used for the processor
interconnection, communication speed can range from almost as fast as shared
memory (in tightly integrated supercomputers) two orders of magnitude slower (for
example, in a cluster of PCs interconnected with an Ethernet network). The
programmer must explicitly program all the communication between processors and
be concerned with the distribution of data.

Distributed-memory computers are traditionally divided into two classes: MPP
(massively parallel processors) and clusters. In an MPP, the processors and the
network infrastructures are tightly coupled and specialized for use in a parallel
computer. These systems are extremely scalable, in some cases supporting the use
of many thousands of processors in a single system.

Clusters are distributed-memory systems composed of off-the-shelf computers
connected by an off-the-shelf network. When the computers are PCs running Linux
0S, these clusters are called Beowulf clusters. As off-the-shelf networking
technology improves, systems of this type are becoming more common and much
more powerful. Clusters provide an inexpensive way for an organization to obtain
parallel computing capabilities.

We have described the various parallel computing and processing that is used on
systems. The HD-UAV ASIC is a chip that has a lot of what we have been describing
built into a single chip, but without all the draw backs to each system. We have
optimized our chip using our own proprietary instruction set and utilizing some of the
various parts of architectures described on the previous paragraphs.

Combinatorial Engine

In digital circuit theory, combinational logic (also called combinatorial logic) is a type
of logic circuit whose output is a function of the present input only. This is in contrast
to sequential logic, in which the output depends not only on the present input but
also on the history of the input. In other words, sequential logic has memory while
combinational logic does not.

Combinational logic is used in computer circuits to do boolean algebra on input
signals and on stored data. Practical computer circuits normally contain a mixture of
combinational and sequential logic. For example, the part of an arithmetic logic unit,
or ALU, that does mathematical calculations is constructed in accord with
combinational logic, although the ALU is controlled by a sequencer that is
constructed in accord with sequential logic.

Our Combinatorial Engine is a unique proprietary design that allows us to optimize
the strict use of our device for real-time compression/encryption. This type of design
can run 30 - 40 times faster than a typical processor because it does not have the
waiting for instructions to tell the microprocessor what to do. It is specifically
waiting for our RISC processor to free it to start handling the major functions of our
UAV ASIC chip. Our Engine uses both stored memory and input related values to for
a Highspeed Digital Design to sample the CMOS Imager and immediately start the
compression and encryption of the Video Data.

Each Blitzcore CPU has a Combinatorial Engine in it right next to the RISC core
processor. Our estimation of how fast the engine can go is accurate based on our
truth tables and the amount of time delays between areas of logic and clocking
speeds. The Combinatorial Engine will set us apart from any other company
attempting to create this type of chip to handle the UAV market. It will take the
industry some time to catch up. We have been working on high-speed digital design
and video codec chips for more than 7 years and we are ready to release this
technology into several different markets including the very lucrative UAV Market.

Project HD-UAV

Prototypes

Lr

t o]

Qwm=~mt

Prototype C
Purpose:

Validate simulation results (critical areas)

Test combinatorial Engine

Test and verify new instructions for Blitz
Core (limited by FPGA)

Collect Data from FPGA to calculate
speed for delays and clocking.

Initial CMOS Imager interface testing

Initial HOD firmware interface tasting

Test areas of Distribution processor

Test areas of Flash Disk interface

Initial Video Driver Testing (Hi-Def)

Lise all test results for Systems Analysis
and refine the Ganit Chart for our
development team.

This prototype will be purchased off-the-shelf to get the
initial test results complete. The test results are crilical
to determing the type of design that "Prototype B will
have to be to have a fully functional design running on
a single board. Below is a picture of the board that we
will be using during this testing. YWe are cumentiy
working on our Phase 2 Development team that will
have the talent to design and test in these strict areas
of development. We will be purchasing about 4 of
these boards including the support software for
developing the Hardware Description Language, The
Gantt Chart and Systems Analysis report will be
adjusted according to the test results of Prototype C.
The cost of this prototype and all the test tools is
roughly $20,000 - 530,000 depending on the tools and

licensable technology we use.

Evory Pin
Accessible for

Frototyping

tsolate All VO
for Prototyping
Wall Mount

Powes

Manal Clock

il for
System Clock

Off-the-shelf board for Prototype C

Two PMED Cormectors for

Mounting Daughter Cards
Such a5 CANDus

Eviry Pinn Accossible fof Protolyjsing

Foar Swichas

Elght LEDs

Four SKA
Connesctons for
LVES Sknats

= Axcelerabor

AN 250-POH08
Antifuse FPGA in
PO0E Socket

Prot e B
Purpose:

1. Validate integration of all areas into one
dasign.

2. Investor viewable design for raising more
capital.

3. Verify speed and control of various
functions on a single board with 4
FPGA's.

4. Validate and Verify all Library Files

5. Based on test results complete Risk
Management report for Phase 3 Chip
design.

B. Design Critical Testing Process for
Phase 3 Chip Design.

7. Tesl results of Library and HDL files o
build and design HD-UAY ASIC.

8. Testinterface ports, (Ethernet, Firewire,

This protolype is a lot more difficult and costly to
design. The Phase 2 development team will get
injected with some excellent alent to help facilitate the
building of this prototype. Qur goal is to be complated
with this prototype by February 15, 2007, After the
testing of Prototype C, we will have a more refined
price quote. The current price we are projecting is
between $150,000 and $200,000 depending on the
features the client and costomer need and which the
Senior Manager (Ryan) approve for designing into the
prototype. This protolype will give us the test results
we need for the final prototype which actually uses our
HD-UAY ASIC chip for the first time, After tha
prototype B is complete the Gantt Chart and Systems
Analysis will be close to 100% complete, so we can
start development on the chip.

USE efc...)
Prnlo_tgga A This prototype will be to validate the chip that a
Purpose: manufacturing company has built using our design

1. To test the first chip off the
manufactuning line.

2. Teslour new Printed Circuit Board
technigues for reducing noise and
handling high-speed digital design.

3. Validate and Verfication process refinad
and created for testing and approving
chips final design.

4. Show prototype to customers and clients
1o show and verify the design and
function of the unit

5. We will add more to this as we get more
into Phase 2 Development teams test
results.

files. We will have a lot more datails about cost but the
Gantt Charts and Systems Analysis reports are in their
initial stages and not a lot of data can be derived from
them in terms of cost.

Manufacturing Process

The HD-UAV ASIC will be outsourced to a leading chip manufacturer. Elite will

scrutinize their process making sure that it meets the demands of our chip. We look
for speed, heat dissipation, power drain, signal integrity, impurities and many other
factors to determine who will ultimately be the company who manufactures our chip.

Integrated circuits are built on a silicon substrate provided by the wafer. Wafer sizes
have steadily increase over the years. Larger wafers means more chips per wafer
and higher productivity. The key figure of merit for a fabrication process is the size
of the smallest transistor it can manfuacture. Transistor size helps determine both
circuit speed and the amount of logic that can be put on a single chip. Fabricration
technologies are usually identified by their minimum transistor length, so a process
which can produce a transistor with a 0.13 um minimum channel length is called a
0.13 um process. (Below 0.10 um we switch to nanometer units, such as a 90 nm
process.)

A pure silicon substrate contains equal numbers of two types of electric carriers:
electrons and holes. The interplay between electrons and holes is what makes
transistors work. The goal of doping is to create two types of regions in the
substrate: an n-type region which contains primarily electrons and a p-type region
which is dominated by holes. (Heavily doped regions are referred to as n+ and p+.)
Transistors action occurs at properly formed boundaries between n-types and p-type
regions.

Metal 3

Metal 2

polysilicon Metal 1

S =

transistor

Cross-section of an integrated circuit
Components are formed by a combination of processes:

= doping the substrate with impurities to create areas such as the n+ and p+
regions;

= adding or cutting away insulating glass (silicon dioxide, or SiO2) on top of the
substrate;

= adding wires made of polycrystalline silicon (polysilicon, also known as poly)
or metal, insulated from the substrate by SiO2.

The n-type and p-type regions and the polysilicon can be used to make wires as well
as transistors, but metal (either copper or aluminum) is the primary material for
wiring together transistors because of its superior electrical properties. There may
be several levels of metal wiring to ensure that enough wires can be made to create
all the necessary connections. Glass insulations lets the wires be fabricated on top of
the substrate using processes like those used to form transistors. The integration of
wires with components, which eliminates the need to manually wire together
components on the substrate, was one of the key inventions that made the
intergated circuit feasible.

Features are patterned on the wafer by the photolithographic process; the wafer is
covered with light-sensistive material called photoresist, which is then exposed to
light with the proper pattern. The pattern left by the photoresist after development
can be used to control where SiO2 is grown or where materials are placed on the
surface of the wafer.

A layout contains summary information about the patterns to be made on the wafer.
Photolithographic processing steps are performed using masks which are created
from the layout information supplied by the layout, though in more complex
processes some masks may be built from several layers while one layer in the layout
may contribute to several masks.

Transistors may be fabricated on the substrate by doping the substrate; transistors
may also be fabricated within regions called tubs or wells. An n-type transistor is
built in a p-doped, and a p-type transistor is built in an n-doped region. The wells
prevent undesired conduction from the drain to the substrate. (Remember that the
transistor type refers to the minority carrier which forms the inversion layer, so an n-
type transistor pulles electrons out of a p-tub). The twin-tub process, which starts
from an undoped wafer and creates both types of tubs, has become the most
commonly used CMOS process because it produces tubs with better electrical
characteristics.

Plub M-tub

Forming tubs
paly
: Sig_i\‘ :
P-fub M-tub

Adding cxide and polysilicon

M diff P diff
P-iub H-uk
iffusing source'draln regions
Matal 1-poly via

Metal 1-n dilf via

P-lub B-tulb

Adding metal

The twin-tub process

Details can vary from process to process, but these steps are representative. The
first step is to put tubes into the wafer at the appropriate places for the n-type and
p-type wafers. Regions on the wafer are selectively doped by the implanting ionized
dopant atoms into the material, then heating the wafer to heal damage caused by
ion implantation and further move the dopants by diffusion. The tub structure
means that n-type and p-type wire cannot directly connect. Since the two diffusion
wire types must exist in different type tubs, there is no way to build a via which can
directly connect them. Connections must be made by a separate wire, usually meta,
which runs over the tubs.

The next steps form an oxide covering of the wafer and the polysilicon wires. The
oxide is formed in two steps: first, a thick field oxide is grown over the entire wafer.
The field oxide is etched away in areas directly over transistors; a separate step
grows a much thinner oxide which will form the insulator of the transistor gates.
After the field and thin oxides have been grown, the polysilicon wires are formed by
depositing polysilicon crystalline directly on the oxide.

Note that the polysilicon wires have been laid down before the diffusion wires were
made-that order is critical to the success of MOS processing. Diffusion wires are laid
down immediately after polysilicon deposition to create self-aligned transistors-the
polysilicon masks the formation of diffiusion wires in the transistor channel. For the

transistor to work properly, there must be no gap between the ends of the source
and drain diffusion regions and the start of the transistor gate. If the diffusion were
laid down first with a hole left for the polysilicion to cover, it would be very difficult to
hit the gap with a polysilicon wire unless the transistor were made very large. Self-
aligned processing allows much smaller transistors to be built.

After the diffusions are complete, another layer of oxide is deposited to insulate the
polysilicon and metal wires. Aluminum has long been the dominate interconnect
material, but copper has now moved into mass production. Copper is a much better
conductor than aluminum, but even trace amounts of it will destroy the properties of
semiconductors. Chips with copper interconnect include a special proection layer of
copper. That layer prevents the copper from entering the substrate during
processing.

Multiple layers of metal interconnect are separate by silicon dioxide. Each layer of
Si02 must be very smooth to allow the next layer of metal to be deposited without
breaks. The deposition process may be somewhat uneven; in addition the existing
layers of metal form the hills and valleys underneath the silicon dioxide. After an
insulating layer is deposited, it is polished to a smooth surface using processes
similar to those used to grind optical glass. This ensures that the next layer of
interconnect will not have to form itself over an uneven surfcae that may cause
breaks in the metal.

Holes are cut in the field oxide where vias to the susbtrate are desired. The metal 1
layer is then deposited where desired. The metal fills the cuts to make the
connections between layers. The metal 2 layer requires an additional
oxidation/cut/deposition sequence. Another layer of silicon dioxide is deposited and
then polished to form the bae for the next layer of interconnect. Most modern
processes offer at least four layers of metal.

After all the important circuit features have been formed, the chip is covered with a
final passivation layer of SiO2 to protect the chip from chemical contamination.

Modern VLSI fabrication processes in fact take hundreds of steps and dozens of
masks. Generating very deep submicron structures with adequate electrical
propertis is much more challenging than was the task of building early MOS Ics
whose transistors were multiple microns across. The larger number of fabrication
steps causes manufacturing times for 90 nm process to take up to six to eight
months; those lead times are likely to increase to grow as the line widths shrinks.

Patents
HD-UAV Patents

1. HD-UAV ASIC - The entire chip
2. CMOS Imager - Proprietary design for our chip that speeds our imaging

processing by 16 times

3. HD-UAV Blitzcore Processor — Proprietary RISC core

4. HD-UAV Combinatorial Engine - Proprietary logic design to speed up
compression and encryption

5. HD-UAV Distribution Processor — One of the most crucial processors in the

ASIC chip

There will be a lot more patents to apply for once the projects gets further into
testing. Below is our process for applying for patents.

Phase 2 Development Taam
Dresigns & new unigue part of the
chig.

l

Dwlalled Patenl Search. Make
EUre we are not using anyane
alsa's technology before we
apgply ourselvas,

!

Faasibility masting aboul naw
lechnalagy bo patend. Looking for long
term maney making abllity. Meeting will
mclude Technical Manager. Saenior
Manager and Patent Atanmey.

!

‘falidate and verify final test results before
applying for patant. We can't changs tha
dasign al al once the patent is applied for 5o
wir Fave 1o be further alang in the design ta
apply for the patent. So Trade secrats at this
lewal are crucial to probect our Corporate
fssals, All employaas go throwgh a dog
sereening and thorough background check
and they have o sign & detallad MDA,

¥

Apply for Patent!

Every processor in the chip has a proprietary instruction set that we designed. The
firmware, which will be copyrighted, is the unique program that will run each
processor. There will be an embedded operating system licensable to anyone in the
aerospace industry wanting to use this chip for other applications besides the UAV.

