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Introducing the Blitzcore™ Processor 

 
� REVOLUTIONARY BUS DESIGN.  Beyond the limitations of the front side bus 

(FSB), the Blitzcore utilizes a new design for ultra fast throughput. 
 

� CHIP LEVEL PARALLEL PROCESSING.  Solving the issues of parallel 
processing on a chip level. 

 
� COMBINATORIAL ENGINE.  This proprietary logic circuit optimized for real-

time compression and encryption can run 30 to 40 times faster than a 
typical processor because it is not waiting for instructions. 

 
� APPLICATIONS FOR THE INTELLIGENCE COMMUNITY AND HOMELAND SECURITY.  

High speed imaging, compression and encryption with real time analytics 
and advanced autonomy algorithms for Unmanned Aerial Vehicles 

(UAVs), video management systems, and the aerospace industry. 
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Executive Summary 

 

Elite Engineering Inc. is a research and development firm based in Colorado.  The 

firm develops intellectual property (IP) cores licensed to new projects and 

established companies based on applications of the proprietary Blitzcore™ Processor 

technology. 

 

Elite was organized to develop and produce IP cores and application specific 

integrated circuit (ASIC) chip design in four key areas:  

 

� defense and military applications 

� media applications 

� wireless technologies 

� medical imaging 

 

The firm’s area of expertise is ultra high speed digital design.  The background of the 

firm’s engineers includes development within the strict tolerances of the aerospace 

industry and the the diligent requirements of medical projects requiring FDA-audits.   

 

The Blitzcore Processor was developed in partnership with Pinpoint Engineering.  The 

design uses aspects of chip based parallel processing and a revolutionary internal 

bus design that eliminates bottlenecks and enables tremendous data throughput. 

 

The firm is developing a unique parallel processing technique in its discret logic 

design for real-time compression and encryption.  The firm is solving key issues of 

cache coherency related to parallel processing on a chip level. The Blitzcore doubles 

as a RISC core processor with a limited number of instructions to handle any type of 

general purpose processing. 

 

The firm is currently considering several candiates for their board of directors and 

advisory panel.  The management of Elite is also being assembled. 

 

Revenue comes from project management fees, firm development fees, licensing 

fees from intellectual property, and ownership in companies launched. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Blitzcore Processor 

 
The Blitzcore central processing unit (CPU) is an ultra high throughput chip design 

developed to process enormous amounts of data on a order of several magnitudes 

greater than other microprocessors.  The Blitzcore utilizes 6 to 16 separate uniquely 

modified RISC core processors.  

 

The processors today still employ the same Harvard Architecture method of 

processing data and uses a single bus to transport raw data and compressed data to 

and from its locations.  The processor while becoming more and more complex will 

still always lack the type of throughput that our ASIC chips can provide.  The 

frontside bus is the gatekeeper to the chip, requiring all data to pass through it.  
 

The Blitzcore uses an instruction set specifically designed for processing raw video with 

a limited number of clock cycles.  Lowering the number of clockcycles is an important 

factor in increasing the speed and efficiency of the design. 
 

 

 

 

 

 
 
 



 

 

Blitzcore ALU 

 

The Blitzcore CPU utilizes a proprietary arithmetic logic unit (ALU).  A typical ALU of a 

computer's CPU is a part of the execution unit, a core component of all CPUs.  ALUs 

are capable of calculating the results of a wide variety of basic arithmetical 

computations.  Virtually all modern computer ALUs use the two's complement binary 

number representation.  Early computers used a wide variety of number systems, 

including one's complement, sign-magnitude format, and even true decimal systems, 

with ten tubes per digit.  

Mathematician John von Neumann proposed the ALU concept in 1945, when he 

wrote a report on the foundations for a new computer called the EDVAC (Electronic 

Discrete Variable Automatic Computer). Later in 1946, he worked with his colleagues 

in designing a computer for the Princeton Institute of Advanced Studies (IAS). The 

IAS computer became the prototype for many later computers. In the proposal, von 

Neumann outlined what he believed would be needed in his machine, including an 
ALU.  

Von Neumann stated that an ALU is a necessity for a computer because it is 

guaranteed that a computer will have to compute basic mathematical operations, 

including addition, subtraction, multiplication, and division. He therefore believed it 

was "reasonable that [the computer] should contain specialized organs for these 
operations".   

Most of the computer’s actions are performed by the ALU. The ALU gets data from 

processor registers. This data is processed and the results of this operation are 

stored into ALU output registers. Other mechanisms move data between these 

registers and memory.  A Control Unit controls the ALU, by setting circuits that tell 
the ALU what operations to perform.  

      Most ALUs can perform the following operations: 

• Integer arithmetic operations (addition, subtraction, and sometimes 

multiplication, though this is more expensive)  

• Bitwise logic operations (and, not, or, xor)  

• Bit-shifting operations (shifting or rotating a word by a specified number of 
bits to the left or right, with or without sign extension)  

Many standard ALUs do not handle integer division or any floating point operations 

since they can be emulated in software. However, several algorithms do exist for 

implementing division in hardware.  The Blitzcore CPU can handle all math functions 

including floating point operations.    

 

The ALU inside the Blitzcore Processor and the Combinatorial Engine are designed 

specifically for high throughput of special codec algorithms.  These designs are 

currently being tested and updated everyday before we apply for our patents in this 

area.  The ALU’s are always designed by different CPU manufacturers to suit their 

specific needs.  We have done the same but we maintain that our ALU can run 2 – 4 

times faster than a typical CPU’s ALU.  We attribute this to the unique design of 



getting the information to the ALU faster and calculating the data quicker.    

  

 

Parallel Processing 

The Blitzcore Processor is an IC level parallel processor but we design the Blitzcore 

Processor into all of our ASIC chips based on our specific customer needs.  For 

example the ASIC Chip for the UAV utilizes 16 Blitzcore Processors to increase the 

Compression and Encryption Process.  We consider the Compression Speed to be real 

time.  We are able to process data from a CMOS Imager at a rate of 100 – 10,000 

Frames Per Second (FPS) depending on the electronic shutter speed of the camera.  

Most Cameras that process data at this speed are not able to be kept up with by 

conventional embedded systems or high-speed PCs.  We are currently designing a 

UAV Chip that will utilize Pinpoint Engineering’s proprietary Blitzcore Processors and 

the front-end design will utilize a Patent Pending Camera Interface owned by Elite 

Engineering and Pinpoint Engineering Inc.  This front-end design directly interfaces 

to a CMOS imager that we are currently designing with a manufacture of this type of 

device.  Our proprietary CMOS Imager will allow us to make full use of our processor 
high-speed compression/encryption technique.    

The chip has a very specific technique to process video data at a high rate of speed.  

This chip will ultimately be very useful in many areas in the aerospace industry.  The 
main target for this project is the UAV market. 

The combinatorial engine that Pinpoint Engineering has developed will be developed 

into prototype “B” for demonstrations for our larger customers and clients.  The 

combinatorial engine is explained in its own section.  Each Blitzcore processor has its 

own engine optimized for sampling and compressing video data from a CMOS 
imager.   



 

The Blitzcore CPU is our main processor that processes all the data but is given all of 

its instructions on what to do by the Distribution Engine.  The Blitzcore CPU has very 

limited instructions that allow it to be optimized for use with the UAV ASIC.  Each 

Blitzcore CPU has the capability of running almost all Codecs used on the market 

today.  We will evaluate our final customers needs and find which compression 

technique they prefer the best and then optimize the instructions to handle the 

Codecs our customers require.    

The Distribution Processor section of the UAV ASIC is far more complex than it looks 

in the block diagram.  Its responsibilities include sending out the information from 

the CMOS Imager, Configuring all processors to be RISC or Combo Engine, Control of 

CMOS Imager and run embedded programs from flash memory.  This processor is 

not a typical microprocessor it has a proprietary instruction set that is more dense 

then the RISC Processor because of its duties.  It can be programmed to run like a 

general purpose processor, although the amount of instruction is not as large as and 

IBM™ Processor is lies somewhere between our RISC and their processor.  The 

CMOS Imager is a modified semiconductor device that is designed specifically for use 

with our UAV ASIC Chip.  It is capable of being sample in 16 separate locations at 

one time thus speeding up our frame rate immediately by 16 times.  Each Blitzcore 

CPU has the capability of handling direct data from the CMOS Imager but the data is 

facilitated by the Distribution processor.  It will receive instructions on when to start 

sampling the data and it knows what to do automatically for compression and 

encryption.    

Concurrency was first exploited in computing to better utilize or share resources 

within a computer.  Modern operating systems support context switching to allow 

multiple tasks to appear to execute concurrently, thereby allowing useful work to 

occur while the processor is stalled on one task.  This application of concurrency, for 



example, allows the processor to stay busy by swapping in a new task to execute 

while another task is waiting for I/O.  By quickly swapping tasks in and out.  Giving 

each task a “slice” of the processor time,  the operating systems can allow multiple 

users to use the system as if each were using it alone (but with degraded 
performance).    

Most modern operating systems can use multiple processors to increase the 

throughput of the system.  The UNIX shell uses concurrency along with a 

communication abstraction known as pipes to provide a powerful form of 

modularity:  Commands are written to accept a stream of bytes as input (the 

consumer) and produce a stream of bytes as output (the producer).  Multiple 

commands can be chained together with a  pipe connecting the output of one 

command to the input of the next, allowing complex commands to be built from 

simple building blocks.  Each command is executed in its own process, with all 

processes executing concurrently.  Because the producer blocks if buffer space in the 

pipe is not available, and the consumer blocks if data is not available, the job of 

managing the stream of results moving between commands is greatly simplified.  

More recently, with operating systems with windows that    
  

Invite users to do more than one thing at a time, and the Internet, which often 

introduces I/O delays perceptible to the user, almost every program that contains a 
GUI incorporates concurrency.  

Although the fundamental concepts for safely handling concurrency are the same in 

parallel programs and operating systems, there are some important differences.  For 

an operating system, the problem is not finding concurrency-the concurrency is 

inherent in the way the operating system functions in managing a collection of 

concurrently executing processes (representing users, applications and background 

activities such as print spooling) and providing synchronization mechanisms so 

resources can be safely shared.  However, an operating system must support 

concurrency in a robust and secure way:  Processes should not be able to interfere 

with each other (intentionally or not) , and the entire system should not crash if 

something goes wrong with one process.  In a parallel program, finding and 

exploiting concurrency can be a challenge, while isolating processes from each other 

is not the critical concern it is with an operating system.  Performance goals are 

different as well.  In an operating system, performance goals ar normally related to 

throughput or response time, and it may be acceptable to sacrifice some efficiency to 

maintain robustness and fairness in resource allocation.  In a parallel program, the 
goal is to minimize the running time of a single program.   

Our parallel processing technique is very unique in that the I/O for accessing the 

CMOS Imager data is initial stage of compression.  The front-end of our processor is 

setup to scan the data directly into the first stage compressed raw video cache.  

Each processor goes into the second stage of compression on its own particular real-

estate for 1/16th of the 4 Megapixel CMOS Imager.  The compression technique is so 

fast that it allows for the use of the word “real-time”.  However real-time is 

something that we are far beyond in terms of throughput and managing and 
analyzing the data available to us from the CMOS Imager.    

 By far the most common way to characterize these architectures is Flynn’s 

taxonomy.  He categorizes all computers according to the number of instruction 



streams and data streams they have, where a stream is a sequence of instructions or 

data on which a computer operates.  In Flynn’s taxonomy, there are four 

possibilities:  SISD, SIMD, MISD, and MIMD.  

Single Instruction, Single Data (SISD).  In a SISD system, one stream of instructions 

processes a single stream of data, click on the arrow to the right to see an example 

of the SISD approach.  This is the common von Neumann model used in virtually all 
single-processor computers.  

 
Single Instruction, Single Data architecture 

Single Instruction, Multiple Data (SIMD).  In a SIMD system, a single instruction 

stream is concurrently broadcast to multiple processors, each with its own data 

stream.  Click on the arrow at the end of this paragraph to see and example.  The 

original systems from Thinking Machines and MasPar can be classified as SIMD.  The 

CPP DAP Gamma II and Quadrics Apemille are more recent examples;  these are 

typically deployed in specialized applications, such as digital signal processing, that 

are suited to fine-grained parallelism and require little interprocess communication.  

Vector processors, which operate on vector data in a pipelined fashion, can also 

categorized as SIMD.  Exploiting this parallelism is usually done by the computer.   



 

Single Instruction, Multiple Data architecture 

Multiple Instruction, Single Data (MISD).  No well-known systems fit this 
designation.  It is mentioned for the sake of completeness.    

Multiple Instruction, Multiple Data (MIMD).  In a MIMD system, each processing 

element has its own stream of instructions operating on its own data.  This 

architecture is the most general of the architectures in that each of the other cases 

can be mapped onto the MIMD architecture.  The vast majority of modern parallel 
systems fit into this category.  Click on the arrow to see and example.  

 

Multiple Instruction, Multiple Data architecture 



The HD-UAV ASIC falls into two categories SIMD and MIMD.  The chips is specifically 

designed for the Aerospace Industry to handle highspeed image compression and 

encryption but also to handle autonomy control over the UAV Drone itself.  The 

purpose of this chip is to be able to handle the media requirements of a High 

Resolution Camera and while compressing and encryption are happening  

simultaneously, it also capable of making intelligent decisions about its flight path 

and possible collision detection based on video data.    

The MIMD category of Flynn’s taxonomy is too broad to be useful on its own; this 
category is typically decomposed according to memory organization.  

In a shared-memory system is called SMPs (symmetric multiprocessors).  Click on 

the arrow to the right to see and example.  All processors share a connection to a 

common memory and access all memory locations at equal speeds.  SMP systems 

are arguably the easiest parallel systems to program because programmers do not 

need to distribute data structures among processors.  Because increasing the 

number of processors increases contention for the memory, the processor/memory 

bandwidth is typically a limiting factor.  Thus, SMP systems do not scale well and are 

limited to small number of processors. 

 

The other main class of shared-memory systems is called NUMA (nonuniform 

memory access).  The memory is shared and is uniformly addressable from all 

processors, but some blocks of memory may be physically more closely associated 

with some processors than others.  This reduces the memory bandwidth bottleneck 

and allows systems with more processors.  As a result, the access time from a 

processor to a memory location can be significantly different depending on how 

“close” the memory location is to the processor.  To mitigate the effects of 

nonuniform access, each processor has a cache, along with a protocol to keep cache 

entries coherent.  Hence, another name for these architectures is cache-coherent 

nonuniform memory access systems (ccNUMA).  Logically, programming a ccNUMA 

system is the same as programming an SMP, but to obtain the best performance, the 
programmer will need to be more careful about locality issues and cache effects.   



 

In a distributed-memory system, each process has its own address space and 

communicates with other processes by message passing (sending and receiving 
messages). 

 

Depending on the topology and the technology used for the processor 

interconnection, communication speed can range from almost as fast as shared 

memory (in tightly integrated supercomputers) two orders of magnitude slower (for 

example, in a cluster of PCs interconnected with an Ethernet network).  The 

programmer must explicitly program all the communication between processors and 
be concerned with the distribution of data. 

Distributed-memory computers are traditionally divided into two classes:  MPP 

(massively parallel processors) and clusters.  In an MPP, the processors and the 

network infrastructures are tightly coupled and specialized for use in a parallel 

computer.  These systems are extremely scalable, in some cases supporting the use 
of many thousands of processors in a single system.    

Clusters are distributed-memory systems composed of off-the-shelf computers 

connected by an off-the-shelf network.  When the computers are PCs running Linux 

OS, these clusters are called Beowulf clusters.  As off-the-shelf networking 

technology improves, systems of this type are becoming more common and much 

more powerful.  Clusters provide an inexpensive way for an organization to obtain 
parallel computing capabilities.    



We have described the various parallel computing and processing that is used on 

systems.  The HD-UAV ASIC is a chip that has a lot of what we have been describing 

built into a single chip, but without all the draw backs to each system.  We have 

optimized our chip using our own proprietary instruction set and utilizing some of the 
various parts of architectures described on the previous paragraphs.    

 

Combinatorial Engine 

In digital circuit theory, combinational logic (also called combinatorial logic) is a type 

of logic circuit whose output is a function of the present input only. This is in contrast 

to sequential logic, in which the output depends not only on the present input but 

also on the history of the input.  In other words, sequential logic has memory while 
combinational logic does not.  

Combinational logic is used in computer circuits to do boolean algebra on input 

signals and on stored data. Practical computer circuits normally contain a mixture of 

combinational and sequential logic. For example, the part of an arithmetic logic unit, 

or ALU, that does mathematical calculations is constructed in accord with 

combinational logic, although the ALU is controlled by a sequencer that is 

constructed in accord with sequential logic.  

Our Combinatorial Engine is a unique proprietary design that allows us to optimize 

the strict use of our device for real-time compression/encryption.  This type of design 

can run 30 – 40 times faster than a typical processor because it does not have the 

waiting for instructions to tell the microprocessor what to do.  It is specifically 

waiting for our RISC processor to free it to start handling the major functions of our 

UAV ASIC chip.  Our Engine uses both stored memory and input related values to for 

a Highspeed Digital Design to sample the CMOS Imager and immediately start the 

compression and encryption of the Video Data.  

Each Blitzcore CPU has a Combinatorial Engine in it right next to the RISC core 

processor.  Our estimation of how fast the engine can go is accurate based on our 

truth tables and the amount of time delays between areas of logic and clocking 

speeds.  The Combinatorial Engine will set us apart from any other company 

attempting to create this type of chip to handle the UAV market.  It will take the 

industry some time to catch up.  We have been working on high-speed digital design 

and video codec chips for more than 7 years and we are ready to release this 

technology into several different markets including the very lucrative UAV Market.    

  



Project HD-UAV 

 

Prototypes 

 

 
 

 



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Manufacturing Process 

 

The HD-UAV ASIC will be outsourced to a leading chip manufacturer.  Elite will 

scrutinize their process making sure that it meets the demands of our chip.  We look 

for speed, heat dissipation, power drain, signal integrity, impurities and many other 

factors to determine who will ultimately be the company who manufactures our chip. 

 

Integrated circuits are built on a silicon substrate provided by the wafer.  Wafer sizes 

have steadily increase over the years.  Larger wafers means more chips per wafer 

and higher productivity.  The key figure of merit for a fabrication process is the size 

of the smallest transistor it can manfuacture.  Transistor size helps determine both 

circuit speed and the amount of logic that can be put on a single chip.  Fabricration 

technologies are usually identified by their minimum transistor length, so a process 

which can produce a transistor with a 0.13 um minimum channel length is called a 

0.13 um process.  (Below 0.10 um we switch to nanometer units, such as a 90 nm 

process.) 

 

A pure silicon substrate contains equal numbers of two types of electric carriers: 

electrons and holes.  The interplay between electrons and holes is what makes 

transistors work.  The goal of doping is to create two types of regions in the 

substrate: an n-type region which contains primarily electrons and a p-type region 

which is dominated by holes.  (Heavily doped regions are referred to as n+ and p+.)  

Transistors action occurs at properly formed boundaries between n-types and p-type 

regions. 

 

 
Cross-section of an integrated circuit 

 

Components are formed by a combination of processes: 

 

� doping the substrate with impurities to create areas such as the n+ and p+ 

regions; 

� adding or cutting away insulating glass (silicon dioxide, or SiO2) on top of the 

substrate; 



� adding wires made of polycrystalline silicon (polysilicon, also known as poly) 

or metal, insulated from the substrate by SiO2. 

 

The n-type and p-type regions and the polysilicon can be used to make wires as well 

as transistors, but metal (either copper or aluminum) is the primary material for 

wiring together transistors because of its superior electrical properties.  There may 

be several levels of metal wiring to ensure that enough wires can be made to create 

all the necessary connections.  Glass insulations lets the wires be fabricated on top of 

the substrate using processes like those used to form transistors.  The integration of 

wires with components, which eliminates the need to manually wire together 

components on the substrate, was one of the key inventions that made the 

intergated circuit feasible.   

 

Features are patterned on the wafer by the photolithographic process; the wafer is 

covered with light-sensistive material called photoresist, which is then exposed to 

light with the proper pattern.  The pattern left by the photoresist after development 

can be used to control where SiO2 is grown or where materials are placed on the 

surface of the wafer. 

 

A layout contains summary information about the patterns to be made on the wafer.  

Photolithographic processing steps are performed using masks which are created 

from the layout information supplied by the layout, though in more complex 

processes some masks may be built from several layers while one layer in the layout 

may contribute to several masks. 

 

Transistors may be fabricated on the substrate by doping the substrate; transistors 

may also be fabricated within regions called tubs or wells.  An n-type transistor is 

built in a p-doped, and a p-type transistor is built in an n-doped region.  The wells 

prevent undesired conduction from the drain to the substrate.  (Remember that the 

transistor type refers to the minority carrier which forms the inversion layer, so an n-

type transistor pulles electrons out of a p-tub).  The twin-tub process, which starts 

from an undoped wafer and creates both types of tubs, has become the most 

commonly used CMOS process because it produces tubs with better electrical 

characteristics. 

 



 
The twin-tub process 

 

Details can vary from process to process, but these steps are representative.  The 

first step is to put tubes into the wafer at the appropriate places for the n-type and 

p-type wafers.  Regions on the wafer are selectively doped by the implanting ionized 

dopant atoms into the material, then heating the wafer to heal damage caused by 

ion implantation and further move the dopants by diffusion.  The tub structure 

means that n-type and p-type wire cannot directly connect.  Since the two diffusion 

wire types must exist in different type tubs, there is no way to build a via which can 

directly connect them.  Connections must be made by a separate wire, usually meta, 

which runs over the tubs. 

 

The next steps form an oxide covering of the wafer and the polysilicon wires.  The 

oxide is formed in two steps: first, a thick field oxide is grown over the entire wafer.  

The field oxide is etched away in areas directly over transistors; a separate step 

grows a much thinner oxide which will form the insulator of the transistor gates.  

After the field and thin oxides have been grown, the polysilicon wires are formed by 

depositing polysilicon crystalline directly on the oxide. 

 

Note that the polysilicon wires have been laid down before the diffusion wires were 

made-that order is critical to the success of MOS processing.  Diffusion wires are laid 

down immediately after polysilicon deposition to create self-aligned transistors-the 

polysilicon masks the formation of diffiusion wires in the transistor channel.  For the 



transistor to work properly, there must be no gap between the ends of the source 

and drain diffusion regions and the start of the transistor gate.  If the diffusion were 

laid down first with a hole left for the polysilicion to cover, it would be very difficult to 

hit the gap with a polysilicon wire unless the transistor were made very large.  Self-

aligned processing allows much smaller transistors to be built. 

 

After the diffusions are complete, another layer of oxide is deposited to insulate the 

polysilicon and metal wires.  Aluminum has long been the dominate interconnect 

material, but copper has now moved into mass production.  Copper is a much better 

conductor than aluminum, but even trace amounts of it will destroy the properties of 

semiconductors.  Chips with copper interconnect include a special proection layer of 

copper.  That layer prevents the copper from entering the substrate during 

processing. 

 

Multiple layers of metal interconnect are separate by silicon dioxide.  Each layer of 

SiO2 must be very smooth to allow the next layer of metal to be deposited without 

breaks.  The deposition process may be somewhat uneven; in addition the existing 

layers of metal form the hills and valleys underneath the silicon dioxide.  After an 

insulating layer is deposited, it is polished to a smooth surface using processes 

similar to those used to grind optical glass.  This ensures that the next layer of 

interconnect will not have to form itself over an uneven surfcae that may cause 

breaks in the metal. 

 

Holes are cut in the field oxide where vias to the susbtrate are desired.  The metal 1 

layer is then deposited where desired.  The metal fills the cuts to make the 

connections between layers.  The metal 2 layer requires an additional 

oxidation/cut/deposition sequence.  Another layer of silicon dioxide is deposited and 

then polished to form the bae for the next layer of interconnect.  Most modern 

processes offer at least four layers of metal. 

 

After all the important circuit features have been formed, the chip is covered with a 

final passivation layer of SiO2 to protect the chip from chemical contamination. 

 

Modern VLSI fabrication processes in fact take hundreds of steps and dozens of 

masks.  Generating very deep submicron structures with adequate electrical 

propertis is much more challenging than was the task of building early MOS Ics 

whose transistors were multiple microns across.  The larger number of fabrication 

steps causes manufacturing times for 90 nm process to take up to six to eight 

months; those lead times are likely to increase to grow as the line widths shrinks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Patents 

 

HD-UAV Patents 

 

1. HD-UAV ASIC – The entire chip 

2. CMOS Imager – Proprietary design for our chip that speeds our imaging 

processing by 16 times 

3. HD-UAV Blitzcore Processor – Proprietary RISC core 

4. HD-UAV Combinatorial Engine – Proprietary logic design to speed up 

compression and encryption 

5. HD-UAV Distribution Processor – One of the most crucial processors in the 

ASIC chip 

 

There will be a lot more patents to apply for once the projects gets further into 

testing.  Below is our process for applying for patents. 

 
 

Every processor in the chip has a proprietary instruction set that we designed.  The 

firmware, which will be copyrighted, is the unique program that will run each 

processor.  There will be an embedded operating system licensable to anyone in the 

aerospace industry wanting to use this chip for other applications besides the UAV.   


